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Consider two parallel rows of point vortices, positionedso that vortices in different 
rows are aligned. The intensity of the vortices in the rows is r and -F, and the distances 
s between the vortices in each row are the same. It is known that such a configuration 
(symmetric vortex street) is unstable relative to small displacements of the vortices [I]. 
In this work we shall study the motion of a symmetric vortex street, caused by a perturbation 
such that every odd vortex pair (the two closest oppositely oriented vortices) converges 
or diverges by the same amount and is simultaneously displaced along or opposite to the 
direction of motion of the street also by the same amount, and in addition the convergence 
or divergence of the vortex pairs does not destroy the symmetry of the vortices relative to 
an axis passing through the center of the undisturbed vortex pairs. By virtue of the 
symmetry of the starting configuration and the spatial periodicity of the perturbations, 
two other symmetric vortex streets, one of which is formed by the initially disturbed vortex 
pairs and the other by the undisturbed pairs, is separated from the starting street. All 
further motion will be determined by the nature of the interaction of these streets. 

Let us examine one such street. The distance between the vortices in the rows equals 
2s and the distance between the rows equals 2h. The coordinate system is shown in Fig. i. 
The complex potential of such a street [i] is given by 

r [ --%) lnsinn(Z-~o)] o, (z) = ~ In s in  ~ ('2~ 2z ' ' 

z = x + ig, zo = ih, ~o = --ih. 

The complex velocity at the point z is given by 

v~--i% = d~/dz, 

whence we find 

sh = (y -- h) ] 
l 

l (y -- h) ~z ; 
ch s l ~s T 

(i) 

In the general case the streets will be arranged as shown in Fig. 2 (since the con- 
figuration is symmetric relative to the x axis, only vortices lying i the top half-planes 
are shown). As follows from (11 and (21, one street, left to itself, will move without 
change of form along the x axis with the velocity [i] 

V = Vx (0, h) = 7[r ctn'" 7"=h (3) 

We denote the velocity created by the i-th street (i = I, 2) at the point (x, Y), 
v(x, y; i). Then 

x, = V(hO + vx(x,,~ h6 2); 
z~ = V(h2) + v,,(z.,., h,; t);  

h, = vy(z,, h,; 2); 

by 

(4) 

(s) 

(6) 
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ft~ = uv(x~, h~; 1)+ 

An overdot indicates differentiation with respect to time. 
(7) yield the integral of motion 

h~ + h~ = A = const .  

Setting H = x 2 -- x i, 6 = h i 
(8), we obtain 

(7) 

Substituting (2), Eqs. (6) and 

(8) 

-- A/2, subtracting (4) from (5), and using (i)-(3), (6), and 

H= r , 2~6I- t t 1 
-'~'snTla_chz~8 + 2n~ ~/ / ; j  ( 9 )  

L t ch T --  COST . 

] cos T eh 2 , a ---- C h . 
�9 --~ - -  - -  COS T 

nH 2~8 and dividing (9) by (i0) we have Denoting Y = cos-[, X = oh- T 

~._r=[r-~ ~. (li) 
dX \X--a} 

From here we find one other integral of motion 

~ = c .  (12) 
~H ch 2~6 

C0S. T ~ a ~ - -  a 

The point of the (H, 6) plane representing the state of the system under study moves 
along the corresponding phase trajectory, determined by (12). It is easy to see that these 
phase trajectories are symmetric relative to the H axis and any straight line H = ns = 0, 
!l, !2 .... ). Since -A/2 < 6 < A/2, in order to construct the phase-plane diagram it is 
sufficient to study the behavior of the phase trajectories in the region P = {0 < H < s 
0 < 6 < A/2}. Dividing (i0) by (9), we obtain 

d8 
dH 

nH t �9 'Ix2 sin T I eh -/-- 
_ _ ~ V - - ~ - W - - -  

2 s h - ' T  \ c o s T -  a 

(13) 

It is evident from (13) that everywhere in the region P, dg/dH < 0. From here it follows 
that a priori there are two possibilities for the phase trajectory passing through the 
point (0, 6): either it intersects the H axis on the segment(0, s and is closed as a 
result of the symmetry relative to the H6 axes, or it does not intersect the H axis on this 
segment and as a result relative of the symmetry to the straight lines H= ns • • it does 
not intersect the H axis anywhere, i.e., it is not closed. Since in the region P there 
are no singular points of (13), the phase trajectories in this region do not intersect one 
another [2]. For this reason the phase trajectory passing through the singular point (s 0) 
divides P into two regions, one of which is filled with the closed phase trajectories and 
the other is filled with open trajectories. Such a phase trajectory is called a separatrix 
[2]. From (12) we find the point 6 1 at which the separatrix intersects the 6 axis: 
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I t  i s  n o t  d i f f i c u l t  t o  show t h a t  0 < 61 < A / 2 .  The g e n e r a l  form o f  t h e  phase  p l a n e  
d i a g ram f o r  0 < H < s 0 < 6 < A/2 i s  p r e s e n t e d  in  F i g .  3.  The da rk  s o l i d  l i n e  i s  t h e  
separatrix. 

If the point representing the state of the system under study moves along a closed phase 
trajectory, then the quantities H and 6 are periodic functions of time [2]. In this case 
the vortex pairs in the street combine into coupled systems: the back pair converges and is 
accelerated, and the front pair diverges and is decelerated until the back pair passes 
through the front pair, after which the pair which is now in front begins to diverge and slow 
down, and the trailing pair begins to converge and accelerate, after which the process just 
described repeats, etc. The nature of the motion corresponding to an open phase trajectory 
is different: the front pair diverges and slows down, and the trailing pair converges and 
is accelerated, and after passing through the front pair the trailing pair interacts in the 
same manner with the next pair, etc. 

Thus we can say that the symmetric vortex street, being unstable, in the presence of 
certain perturbations can pass through different types of ordered motions. So, in the first 
case the entire vortex street separates into cells, consisting of two bound vortex pairs, 
and in the second case one street moves within the other. 

We shall now establish the relationship between the initial perturbation and the nature 
of the subsequent motion of the system under study. The separatrix passes through the point 
(s 0) and starting from this and (12) we write its equation in the form 

i ii ' C,, C~ = 2/(a ~ -  i). ( 14 )  
~H 2n8 

cos -7 - a ch 7- - ~ 

Any phase trajectory lying below the separatrix corresponds to periodic motion, and any 
trajectory lying above it corresponds to nonperiodic motion (see Fig. 3). It is not diffi- 
cult to show that for C < C l the street will separate into cells consisting of bound vortex 
pairs, and for C > C I there arises a motion of one street within the other. Here C is the 
constant appearing in (12) and depends on the initial conditions. 

Assume that initially the odd vortex pairs have moved relative to the even pairs along 
the x axis by an amount ~ and simultaneously every vortex in the odd pairs has moved along 
the y axis by an amount e (vortices of different intensities move along the y axis in 
opposite directions, so that the symmetry of their arrangement relative to the x axis is 
preserved). From (8) and (12) we find 

i I 

Positive values of e correspond to convergence of the disturbed pairs, and negative values 
correspond to divergence. Now, in order to determine the nature of the motion occurring 
after the action of the perturbation described, it is sufficient to compare (14) and 
( 1 5 ) .  
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Let, for example, the vortices of the odd pairs move initially along the x axis. It 
is easy to show that in this case C < C I for any value of $. If the disturbance is such 
that vortices of odd pairs move along the y axis only, then C > C I irrespective of the value 
of e, i.e., purely longitudinal disturbances give rise to the formation of cells in the street, 
while purely transverse disturbances separate the starting street into two streets~ 

1~ 
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A METHOD FOR THE SOLUTION OF NONSTATIONARY PROBLEMS FOR 

A LAYER OF LIQUID WITH MIXED BOUNDARY CONDITIONS 

A. A. Zolotarev and L. I. Zolotarev UDC 532.593 

In this paper we develop a method for the solution of nonstationary problems with mixed 
boundary conditions for a layer of heavy liquid. In contrast to well-known analytical- 
numerical approaches (see [i, 2]), the method we propose makes it possible, being based 
on a factorization method, to carry out an analytical study of the process of excitation and 
the establishment of waves. 

By way of illustrating, we consider the problem of generating excitations by means of a 
set of external pressures applied to the upper boundary of a layer of liquid partially 
covered by an eleastic plate. We model a nonstationary processinvoiving the interaction 
of waves, excited through baric formations, with a limited ice field. 

Mathematically stated, our problem has the form 

av/at = -- p~* VP,~ -- ~ < z,: y < ~, -- H~< z ~ 0, div = 0; 

In:,: 
z=o  p , = q +  p,g + to,; w =  

/ l  = M a  = M ,  = 0,; x ~ OQ~ x = {x,  y}; .  

n aoV'+po  r- Iq(,,;t),. 
ot - i '  q = LO,~ x ~ D~ ' 

z = - - H , ,  w = O ;  

( i )  

(2) 

(3) 

(4) 

Here {x, y, z} is a rectangular Cartesian coordinate system with origin on the unperturbed 
free surface of the liquid; the z axis is directed vertically upwards; t is the time; p, is 
the dynamic component of the total pressure p in the liquid; v = {u, v, w} is the velocity 
vector; p, and H are the density and thickness of the layer of liquid; ~ is the elevation 
of the free surface, coinclding in the domain ~ occupied by the plate with its vertical 
displacement. R, Mn, and M r are the intersecting force, the bending moment, and the torque 
on the end of the plate ~; do, P0, and h are the stiffness, the density, and the thickness 
of the plate; q(x, t) is the external perturbing pressure, specified in the domain D = Dz U 
D2, acting on the free surface of the liquid in the domain Dz and on the plate in D2; g is 
the gravitational acceleration. 

We introduce dimensionless variables, identifying them with the subscript i: 
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